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ASYMPTOTIC SOLUTIONS OF MODEL EQUATIONS
IN NONLINEAR ACOUSTICS

By D.G. CRIGHTON an~p J.F.SCOTT
Department of Applied Mathematical Studies, University of Leeds, Leeds LS2 9JT, U.K.
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This paper uses the method of matched asymptotlc expansions to derive asymptotic
solutions to various problems in nonlinear acoustics. Model equations, generalizing
the well known Burgers equation to include effects of cylindrical or spherical spreading
and of non-equilibrium relaxation, are given and regarded as governing the propa-
gation. Solutions are sought for initial or boundary conditions of N-wave or harmonic
wave form. For a thermoviscous medium, the small parameter upon which the asymp-
totic expansions are predicated is an inverse acoustic Reynolds number; for a relaxing
medium it is the product of wave frequency and relaxation time. The complete asymp-
totic solution for N-waves in a thermoviscous fluid is known, in the case of plane motion,
from the Cole~Hopf'solution of Burgers’s equation. Here a similarly complete solution is
found for spherical N-waves, with the exception of one region of space-time in which an
irreducible nonlinear problem remains unsolved. In this region the outer limiting
behaviour is, nevertheless, determined, so that the solutions in all other regions are
completely fixed. For cylindrical N-waves an 1rreduc1ble problem again results, but the
motion can be followed right through into its ‘old age’ phase aside from an andeter-
mined purely numerical constant. Correct results are obtained here for the ‘correction
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102 D. G. CRIGHTON AND J.F.SCOTT

due to diffusivity’ to the weak-shock theory prediction of shock centre location for
plane, cylindrical and spherical N-waves. These results indicate a non-uniformity in
weak shock theory at large times, and also, in the case of spherical N-waves, reveal a
large time non-uniformity in the Taylor shock solution. Harmonic waves, plane,
cylindrical and spherical, in thermoviscous fluids and relaxing fluids are considered,
and the asymptotic solutions are found to leading order in most of the many overlapping
asymptotic regions of space-time. A single dimensionless function remains undeter-
mined in the important case of spherical harmonic waves. We have also been unable to
find scalings and differential equations describing precisely how a discontinuity is
formed at the front of a partly dispersed shock in a relaxing gas, though the shock centre
is located for both fully and partly dispersed shocks. The harmonic wave solutions
unify and extend certain solutions (the Fay, Fubini and old-age solutions) which are
well known in the nonlinear acoustics literature, and the amplitude saturation and
scaling laws for the old age regime are in accord with experiments on high amplitude
spherical waves in water.

1. INTRODUCTION

This paper deals with the asymptotic solution of certain model equations which have found
considerable popularity in nonlinear acoustics, and related fields, over the past two decades. Of
course, the best known is the Burgers equation, introduced in its familiar form

Ou Ou Q%

a—-l—u-é;-— Vm, (11)

into unsteady aerodynamics by Cole (1951), and into nonlinear acoustics by Mendousse (1953)
in an equivalent form v o o

6_36—1)65:66—972’ (12)

better suited to boundary value problems. Lighthill (1956) first provided the basis for regarding
Burgers’s equation as a rational approximation to the full equations for plane unidirectional
unsteady motion in a non-relaxing thermoviscous fluid, rather than simply a model having cer-
tain structural features in common with the full equations. Further detail in this direction was
provided by Hayes (1958), while more recently Moran & Shen (1966) and Leibovich & Seebass
(1974) — among many others — have shown how Burgers’s equation arises in appropriate circum-
stances from the application of matched expansion and multiple scaling techniques (respect-
ively) to the full equations.

For plane progressive waves, the basic criterion for the validity of Burgers’s equation (whether
in the initial-value problem form (1.1) with u(x,# = 0) prescribed, or in the boundary-value
problem form (1.2) with v(x = 0, 0) prescribed) is that changes due to nonlinear convection, to
the nonlinearity of the pressure-density relation, and to thermoviscous diffusion should be slow’
on a wavelength scale. For progressive waves with cylindrical or spherical symmetry a general-
ized Burgers equation can be derived, in the form

v v 0%
6;4‘52—055—6-6—0-2, (1.3)

corresponding to (1.2), only when a further ‘far field” approximation is made (Lighthill 1956).
The far field approximation again ensures that changes — this time associated with the linear
geometrical spreading effect — should be slow on a wavelength scale. In (1.3) the integer j is

determined by the number of dimensions in which the wave can spread; j = 1 gives cylindrical
spreading, j = 2 spherical spreading.
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MODEL EQUATIONS IN NONLINEAR ACOUSTICS 103

When j = 0, the Cole-Hopf transformation (Cole 1951, Hopf1950) yields a linearization, and
hence exact general solution to (1.1), and there is a corresponding transformation for the form
(1.2). The implications of this solution for various initial waveforms of particular physical interest
have been explored by many authors, including Lighthill (1956), Hayes (1958), Blackstock
(1964) and Whitham (1974). The subtleties concealed by the Cole-Hopf solution have not,
however, been exhaustively revealed by these studies, and we shall need to examine certain
aspects in more detail yet, in § 3 below.

For j # 0 no linearizing transformation of (1.3) is known. Equation (1.3) is a canonical
equation, embodying the conflict between linear propagation, cylindrical or spherical spreading,
nonlinear convection and thermoviscous diffusion, and as far as we are aware, only one exact
solution has yet been found. That solution is a similarity solution for cylindrical flow, with the

form who(x, 0) = D(x/07). (1.4)

Its existence was first noted by Chong & Sirovich (1973); the closed-form expression for @ was
given by Rudenko & Soluyan (1977, p. 70); and Sinai (1976) found the profile of the axisym-
metric body which would produce the similarity solution in the steady supersonic flow problem
governed by an equation of the form (1.3). In the absence of further exact solutions to (1.3) we
are severely handicapped; even the numerical solutions of an equation equivalent to (1.3) with
an N-wave initial condition given by Sachdev & Seebass (1973) are less useful than they might
be. This is because the numerical integration has been stopped at too early a stage, as judged
from the calculations to be presented here in §3 at any rate. These asymptotic calculations are
really needed before any numerical integrations are carried out, in order to estabhsh the typical
distances and times over which various processes are significant.

Other approximate solutions of (1.3) have invariably been of an ad hoc nature. Parker (1975),
for example, applies the Cole-Hopf transformation

0
v = 26550y (1.5)
. 0 In 02
to give af szxlﬁ at;é’ (1.6)

and then approximates this equation as

P D)

% +] 602 (1.7)

on the basis that v is in some sense ‘small’. This is, however, at best a local approximation, and
solutions of the resulting linear equation (1.7) have no overlap with other asymptotic solutions of
(1.3). For harmonic waves equation (1.3) is equivalent to an infinite set of coupled nonlinear
ordinary differential equations for the development with range x of the Fourier amplitudes.
Various proposals have been made (Shooter, Muir & Blackstock 1974; Fenlon 1971) for the
truncation of this set, and for the derivation of a single equation for the fundamental amplitude.
These proposals are motivated by physical reasoning, and have no mathematical justification:
though we shall in fact see that the form given by Shooter, Muir & Blackstock is, in several

important respects at least, consistent with our asymptotic results.
When we come to relaxing media, the papers best known in the West, giving a model equation

of the type v w0 0%
(1+25) (F-255-c5) = 5 | (1.8)

13-2
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104 D. G. GRIGHTON AND J.F.SCOTT

replacing the Burgers equation, are those by Ockendon & Spence (1969) and Blythe (1969). An
equation equivalent to (1.8) had, however, previously been given by Polyakova, Soluyan &
Khokhlov (1962). Again, cylindrical or spherical spreading can be included, asin (1.3), and it is
easy to derive (1.8) (or an equivalent initial-value problem form) from the full equations in a
formal manner by using the multiple scaling technique of Leibovich & Seebass (1974). The
validity of (1.8) does not depend upon any high or low value of the parameter 2, equal to the
product of a typical wave frequency with the relaxation time, but does depend upon the assumed
smallness of the difference between the sound speeds in ‘frozen’ and ‘ equilibrium’ conditions, the
parameter I" being proportional to this difference. Equation (1.8) shows that, in all parts of a low
frequency wave where the relaxation operator (1 +£20/00) may be replaced by unity, relaxation
cffects are equivalent to a bulk viscosity I" (in dimensionless form) additional to the thermo-
viscosity €. Rudenko & Soluyan (1977, p. 93) attempt to improve on this interpretation by
expanding (1+£20/00)~* as (1 —£020/00+ 0(£2?)) for 2 < 1, so that (1.8) becomes
v
i

o o
ox 00

ros. (1.9)

= 4+ o~ g

a fusion of the Burgers and Korteweg—de Vriesequations. Itis well known (cf. van Wijngaarden
1972; Whitham 1974, p. 484) that in some parameter ranges the steady shock transition solution
to (1.9) may exhibit oscillations on the downstream side, while in other ranges the solution will be
of the more normal non-oscillatory type. This behaviour has been observed experimentally in
bubbly liquids, for which (1.9) is indeed the correct model equation, and Rudenko & Soluyan
claim that the prediction is in accord with observations of oscillatory waveforms in an ordinary
relaxing gas (see their fig. 4.5, p. 93). Their claim is, however, invalid for the following reasons
(which presuppose, of course, that (1.8) is the correct equation to model the situation of fig. 4.5):

(i) the steady shock transition solution to (1.8) does not exhibit oscillations;

(ii) wherever the final, dispersive, term in (1.9) is significant, (1.9) is not a valid approxi-
mation to (1.8);

(iii) evenif (1.9) is accepted, its solutions do not exhibit oscillations on the downstream side if
¢, I', 2 are all positive and if I'Q < (e+1I").

Our own work on equation (1.8) fails to give any indication of the origin of the observed oscil-
latory waveforms (except in bubbly liquids), and we are inclined to regard the oscillations dis-
cussed by Rudenko & Soluyan as being associated more with the electronics of the experiment
than with the dynamics of relaxing gases.

As for exact solutions of (1.8), only one is known, corresponding to the steady progressing shock
transition. If ¢ = 0 the solution (discussed by all the authors just cited) can be expressed in the
closed form given in §4 below; it represents a continuous fully dispersed relaxing shock for wave
strengths below a critical value, whereas for greater wave strengths a partly dispersed shock
results, the solution is discontinuous and requires the introduction of thermoviscous effects to
provide fine-scale structure in the shock front. High frequency asymptotics for (1.8) are easily
obtained; as £ - oo (1.8) takes the form

g Oq

o Tt =0 (1.10)

the Varley—Rogers (1967) equation, which can be immediately solved by the method of charac-
teristics. Solutions obtained in this way are analysed by Rudenko & Soluyan (1977, p. 95).
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MODEL EQUATIONS IN NONLINEAR ACOUSTICS 105

Perturbations beyond the leading order solution ¢(x,{) are also obtained without difficulty of
principle. The low frequency limit £2-> 0 has not been studied systematically, and the work of
§§4 and 6 below therefore deals with a matched expansion approach to low frequency problems.
Some aspects of these problems have been touched upon before, for example in problems of
steady supersonic relaxing gas dynamics treated by Clarke & Sinai (1977) and Sinai & Clarke
(1978), also with the aid of matched expansions. There are interesting parallels between this
field and that of nonlinear acoustics which deserve to be more widely appreciated; so also do
singular perturbation techniques in general among workers in nonlinear acoustics.

Many other model equations have now been derived to characterise nonlinear acoustic propa-
gation in other circumstances — in bubbly liquids, radiating gases and aerosols, in stratified
fluids, in tubes with wall boundary layer dispersion and dissipation, in nonlinear beams with
diffraction and in gases suffering absorption of intense laser radiation. A review of the model
equations for all these situations, and more, is given by Crighton (1979). In future work we hope
to extend the present studies in some of these directions. For the present we attempt to elucidate
the asymptotic structure of problems involving the propagation of plane, cylindrical and spherical
waves, of N-wave or harmonic wave form, in thermoviscous and relaxing fluids. In §2 we
outline the basis for the model equations to be studied, and in §§ 3—-6 we analyse these equations in
the context of specific initial or boundary values. The concludingsection advocates the widespread
use of singular perturbation techniques in nonlinear acoustics (particularly in underwater
acoustics), while an appendix proves a result for the long-time development of a certain solution
to the spherical wave Burgers equation which is crucial to the derivation, in § 3, of the ‘old age’
solution for spherical N-waves. (The reader should note that the symbols used in this Introduction
are used in a generic sense, and do not necessarily correspond with the precisely defined symbols
used in the sequel.)

2. BASIS FOR THE MODEL EQUATIONS

When finite-amplitude or real gas effects are taken into account, sound propagation no longer
satisfies the ordinary wave equation. If these effects are small, however, in some sense to be made
more precise later, then the sound wave changes form slowly as it propagates forward. If, in
addition, the disturbance is non-planar, having spherical or cylindrical symmetry instead, then
the geometry also contributes to the deformation of the waveform. Approximate equations
describing this gradual distortion can be obtained by various methods, and we consider below
two specific examples.

(i) Finite-amplitude waves under the influences of viscosity, heat conduction and curved geometry

The sound wave has plane, cylindrical or spherical symmetry (symbolized by j =0, 1, 2
respectively), and to ensure that deformation of shape is slow we require:

(@) UJay < 1, where U is the velocity of the medium and g, is the small-signal sound speed:
this means that finite amplitude effects are locally small.

(b) I/r < 1, where [is a typical wavelength of the disturbance and 7 is the distance to the centre
of symmetry: meaning that geometric spreading effects are small.

(¢) A4/(ayl) < 1, where 4 is the ‘diffusivity of sound’ (Lighthill 1956), i.e. thermoviscous
diffusive effects are small.

Since these deformations are slow, the wave equation U = a3 U,, applies to a first order, and so
a small amplitude initial waveform will split into two, one travelling to the right, the other to the
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106 D.G.CRIGHTON AND J.F.SCOTT

left, at the sound speed @,. In considering the deformation of the waveform by the above effects we
restrict attention to the right-travelling disturbance. Accordingly we introduce the coordinate
X = r—a,t, while ¢ is defined so that the centre of the wave is at X = 0; it is immaterial, in virtue
of () above, which part of the wave we choose as centre. Then we refer the reader to Leibovich &
Seebass (1974) for derivation of the following equation:

ou y+1.0U0 .U | U
“'l‘""‘U"‘“*‘I'j%—gAm.

at 2 Usy (2.1)

Here 7y is the adiabatic exponent, or alternatively 1+ B/A, where 4, B are coefficients in an
assumed expansion of pressure in powers of the density generalizing the adiabatic law to media
other than gases (see, for example, Blackstock 1972). Equation (2.1) is referred to as a generalized
Burgers equation, reducing to the familiar Burgers equation in the case of plane flow, when
Jj=0.

Suppose we start with some initial disturbance uy(X) at a time ¢, (which could be produced by
a piston motion at 7 = {,/a,), having length scale /, and amplitude U,. The general character of
the subsequent motion is discussed in Leibovich & Secbass (1974). No non-trivial solutions of
(2.1) are known unless j = 0, with the sole exception of the similarity solution (1.4) forj = 1, but
fortunately the most interesting results occur in the limit of small diffusion, when 4/U, 1, < 1.
In this case convection will cause the wave to steepen and shock in the familiar way, resulting
in thin shocks in which a balance with diffusion has been struck. As explained by Leibovich &
Scebass, the waveform at this stage has a sawtooth structure. To elucidate the subsequent
development of the sawtooth we shall here consider the initial condition

U, X/l, for |X|<lo,}

U(X,t,) =
(&b { 0 for |X|>1,

(2.2)

which contravenes condition (¢) because of the sharp steps at X = + [, but quickly adjusts itself
(in what we will call the ‘embryo shock region’) to a standard ‘N-wave’ with thin shocks at
either end and for which (¢) is satisfied. So from this time on the model equation will indeed
describe the physical problem. In any event, (2.1) and (2.2) are also of interest as a vehicle for an
illustration of the treatment of nonlinear wave problems by the method of matched asymptotic
expansions (m.a.e.).

To make treatment of (2.1, 2.2) easier we make the transformations

V=(©/)YU/G, x= X[,
L3y +1) Us(t—10) /1 if j=0,
T={1+(y+1) U5t ~1,) /I, if j=1,
L3y + 1) [Usto/l] In (¢/t,) if j =2,

and obtain the initial value problem cited at the beginning of §3, with the dimensionless par-

(2.3)

ameters Ty = (y+1) Uptofily (j#0), (2.4)
A+ )Gl i j=0,
e=120/(y+ )G, T, if j=1, (2.5)

Ae Vo /(y +1)Uyl, if j=2.

In the interesting case when geometric and convective effects are of comparable importance, 7} is
of order unity and e is small. Thus in § 3 we keep 7; > 0 fixed and let 0 +.
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MODEL EQUATIONS IN NONLINEAR ACOUSTICS 107

(ii) Finite-amplitude waves with relaxation and thermoviscous effects

Here the sound waves will be taken to be planar, and we will require:

(a) U/ao < 1:

(b) 4fal <1,

(5) (aao _ao)/aoo <1,
where @, and g, are the equilibrium and frozen sound speeds respectively. On this basis Ocken-
don & Spence (1969) give a derivation of the following equation for unidirectional propagation:

o\ (oU  (v+1 ou | 0U oU
(1 +T§l‘) {Ft--l-(-—?z-— U+{l°°) -aY‘——gAm= = (aw-—ao)—a—X, (2.6)
in which 7 is the relaxation time, and the frame of reference is at rest. Now U satisfies
.a_(.]+ .Q.g =0
% " hex T

to a first order (as can be seen from (2.6)), and so in the smaller terms we may replace 0U/0t by
—a,0U/0X, or vice-versa. Defining T = ¢ — X/a, as a retarded time based on the zero frequency
sound speed, and using the above rule we find that

_ON (U y+4+10U A RU\ _ 7(an—a) 32U
(1 + ’6‘7) (55(““2413 5:7"'922['@7‘) =@ aTr (2.7)
The boundary condition we take in §§4 and 5 is
U0, T) = UysinwT, (2.8)

a widely studied condition of fundamental importance. This condition does not quite correspond
to that required by a sinusoidal piston motion because the condition is imposed at X = 0 rather
than on the moving piston face. We disregard this objection on two counts, namely (1) that it is
well known that the particular nonlinear effect associated with finite displacement of the piston
is a purely local one, of no significance away from the boundary, and (2) that in many cases there
may not be any ‘piston’ present, but one may have instead experimental data at a fixed station
X = 0 and wish to ask the legitimate question as to how those data will evolve under nonlinear
and other effects. ‘
Rescaling variables in (2.7) and (2.8) according to

0=wT, u=U/U, and x=[(y+1)U,wX/24]. (2.9)
. 0\ (Ou Ou (0% 0%u
we obtain (1 +aeé-9) (a—u—a—-ﬁ«—— 6532) = €35m0 (2.10)
with € = 20t(a,—ay) /(y+1) U,
a =3y +1) Up/ (ae — 1), (2.11)

0= Adw/(y+1)U,a,.

The most interesting case involves ¢ = O(1) and € € 1 with very little viscosity (which we include
only to smooth off the discontinuity in any partly dispersed relaxation shock). This allows us to
pick up the whole range of thin relaxation shocks, both fully dispersed and partly dispersed, for
shock heights O(1). The reader is referred to Ockendon & Spence (1969) for a discussion of the
relaxation shock structure.
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108 D.G. CRIGHTON AND ]J.F. SCOTT

This completes our setting up of the problems we shall consider here; there are of course many
other similar problems which can be treated by the same methods. But we go into details only for
the equations and boundary conditions discussed above as illustrations of the techniques of m.a.e.
and of the undoubted power of these techniques in difficult problems of nonlinear acoustics.

3. N-WAVES FOR THE GENERALIZED BURGERS EQUATION

The model equation to describe nonlinear acoustic propagation in a thermoviscous gas can, as
explained in § 2, be transformed to read

ov oV 4
6?+ V—a; =€g(T)-a—x—2, (3.1)
in which e is an inverse Reynolds number and
g(T) =1, HT+T—1), exp(T/Ty), (3.2)

for motion with plane, cylindrical or spherical symmetry, respectively. We consider the asymp-
totic solution of (3.1) as ¢~ 0 for the N-wave problem defined by

x for |x] <1,
0 for |x| > 1.

V(x, 1) = { (3.3)
We note that the exact solution to the N-wave problem is antisymmetric about x = 0, so that

we consider only ¥ > 0. Next note that the ¢ = 0 solution is

V0={x/T for x < T4,

3.4
0 for x> T3 (3.4)

Observe at this point that the solution ¥ holds to all algebraic orders in € as the outer solution, i.e.

Vi, T) = Vy(x, T) +0(en) (3.5)
for all positive .

This loss-less solution has a discontinuity which must be smoothed off in the usual way by a
shock via the scaling

x* = (x—T3) /e, (3.6)
and matching of an inner solution to (3.4). In the inner region we find
V="T¥x*T)+o(1), (3.7)
where, after straightforward matching to Vj,
v _17-3fq_ x*—A(T)
VE=3T %{1 tanh[ﬁlT%g(T) . (3.8)

This is effectively Taylor’s (1910) solution for the structure of a steady state thermoviscous
shock in which convection and diffusion balance; the shock is thin, and therefore locally plane,
so that the function g(7") representing curvature effects is constant fhrough the shock front
(Lighthill 1956, p. 323). This state of affairs does not persist to indefinitely large distances, how-
ever, as we shall see in due course.

The function 4(T'), locating the centre of the thermoviscous shock, will now be found by two
methods.
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MODEL EQUATIONS IN NONLINEAR ACOUSTICS 109
(i) To use the integral conservation technique we integrate (3.1) from 0 to x > T'%, to get
d ov v
37| Vs = —e(T) (5 0, T) =52 (5 7)) 44730, T) - Vs, T}
in which, on the right, we can put
%E (0,T) = T, %Z(x TY—0, and V(0,T)=V(x, T) =0,

since both points are taken to lie in the outer region, where (3.4) holds with an exponentially
small error. Then we integrate over 7" and apply the initial conditions (3.3) to obtain

x 7
fo de=%—ef1g—l(f~)dt. (3.9)

The constant () is the prediction of the ‘equal areas’ rule of ‘weak-shock theory’ (see for
example, Whitham 1974, ch. 9); the second term in (3.9) is a correction to weak-shock theory
arising from diffusive effects, and ultimately dominates the first term at large times.

Lighthill (1956, equation (156)) first derived the first order ‘correction due to diffusion’ for
the shock position in plane flow. Sachdev (1975) attempted to derive comparable results for
cylindrical and spherical N-waves using a conservation law technique discussed by Lighthill
(1956, p. 334) and elaborated upon by Murray (1968). Sachdev’s results are, however, seriously
in error, as we shall show not only by the use of the conservation principle but also by the use of
matched asymptotic expansions; both Murray (1968) and Sachdev (1975) give the impression
that m.a.e. must necessarily fail to locate the shock precisely because of the exponentially smooth
matching of the shock with the main wave, but that impression is not upheld by detailed analysis.

To evaluate the integral on the left hand we need more information about the inner solution,
so that we continue the inner shock expansion with

V=VT§+eVE+o(e), (3.10)

and we define the functions
o) = Vi + THHE*) - 13, ot
J(¥) = VE+ T {H(x%) —1},} )

where H denotes the Heaviside step function. Introduce the expansion operators E,,, £ up to
O(en) in the outer (x) and inner (x*) regions, respectively, and then we have

E,(fy+efy) = EJVE+eVE+xTH(x— T%) —1]},
Enhik(V>— 1 n(V)3
=0,

by the asymptotic matching principle (Van Dyke 1975, p. 220). But from the form (3.8) we have
E,(f,) = 0, so that we must also have £, (f;) = 0, from which it follows that f; is smaller than
any inverse power of x* as ¥* — + 00, and so, that f; isintegrable over #*. If we now form an
additive composite for V to O(e) we find that

V= Vit o+ efy+olc)

uniformly for x > 0. Insert this in (3.9), note that
foodx ~1, fwf(,dx — eTHA(T) +0(e),
0 0

14 Vol. 2g2. A.
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110 D.G. CRIGHTON AND ]J. F.SCOTT
x +o
and that f Sfrdx = ef Srdx*+o(e) = O(e)
0 —
because of the integrability of f; over x*, and then we find
eTHA(T) +0(c) f Wy,
T
so that A(T) =~ T%f g_g_t) dt. (3.12)
1
(ii) To use m.a.e. to locate the shock centre we calculate V¥ (in 8.10) explicitly. We have
aVo (O 1_6V1_ G
T T G (Vo Vi) -1 gs (T)ax*z’
in which we set y=[x*—A(T)]/4T%g(T),

and use the known form (3.8) of the function V§; the equation may then be integrated to give

V= %-— T-1g(T) (yzsech2y+2ytanhy-—- 1—2y) +G(T) (ysech®y +tanhy)

+K(T) sech2y+4T%‘ {j In (coshy) tanh y +tanh y

+sech?y[y (In2+ }y) + {1 diln (1 +exp 2y)]}. (3.13)

Here diln denotes the dilogarithm,
diln (x) = — t—lﬁidt (3.14)
Li—
(see Abramowitz & Stegun 1964, p. 1004 and Lewin 1958), while G(T") and K(T') are as yet
arbitrary functions, to be determined by matching. From this we find

a4
a7

dg

— -1 — — — -5
AT =1+ T-4g(T) - G(T) - 4T 2,

EI(V3“+6V;")=V(,+6{ (1+ln2)} for x< T4%,

, dg

d4
3 =5
{ +T gT)+G(T)+4T* I7

I (1+1n2)} for x> T4,

and the matching principle allows us to set both coefficients of ¢ to zero. Elimination of G(T")

¢ .
hen gives dA/dT+ T-}g(T)—1AT- = 0,

Tg(t)
so that A(T) = A(1) — T%f W, (3.15)
1
from which we then find
G(T)=-4T¥(dg/dT)(1+1In2)—3AT- (3.16)

Expression (3.15) is identical with (3.12) except for the presence of the constant 4(1) which
must, in the spirit of m.a.e. be evaluated by use of the initial condition. However, the solution we
have so far cannot satisfy the initial conditions, since as 7—> 1 + our inner solution (3.8) tends to a
form which is certainly not a sharp step, because g(1) > 0. This indicates the need for a new
region — the embryo shock region, which will occur in all our problems — in which the shock adjusts
from a step to the fully developed Taylor form in which convection and diffusion are in a steady
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MODEL EQUATIONS IN NONLINEAR ACOUSTICS 111

state balance. For the N-wave problem it turns out that the appropriate scalings for the embryo

shock region are .
f=(x=1)/e, T =T—-1)/e, V(T e =0(1). (3.17)

These scalings are not the same as those used by Lighthill (1956, §8.3) in his discussion of the
same topic (under the title ‘region of shock formation’) for the plane flow of a thermoviscous gas,
using the Cole~Hopf solution of Burgers’s equation. The different scalings arise because here the
shocks are present at the initial instant, whereas Lighthill considers a general initial value prob-
lem in which the shocks are eventually produced by convective steepening. In § 4 we discuss plane
harmonic waves in a relaxing gas, and for that problem find precisely the same scales as those of
Lighthill for the description of the embryo shock region.

We thus try here (5, T,¢) = Tya, 1) +o(1), (3.18)
, o pdlh_ @R
and find that 5?+V0—-§ = ¢(1) 55 (3.19)

i.e. V), satisfies the ordinary Burgers equation. The initial conditions are
?0(723 0) = 1_H(ﬁ), (3.20)

and the solution can be found from the Cole~Hopf linearizing transformation (Lighthill 1956,
p- 299) in the form
N —% Y -1
A= 14l #/(40g(1))} exp[ - (7 20/4500) (3.2
exfe[(£—1) /(47 g(1))F]

Express ¥}, in terms of the inner shock variables x* and 7 and expand for - 0, to get

N Té—1 o T-1\ 1 x*
¢ — x¥ = =-l1-
I{)(x = a¥t—, T = - ) = 2{1 tanh(4g(1))}+o(1),

which, when matched to the appropriate (£,7) asymptotics of (3.8), yields

A(1) =0,

and confirms the equivalence of our two methods in predicting the result (3.12).

The integral conservation technique is much more efficient than m.a.e. as a method for cal-
culating 4(7T"), although, on the other hand, if one wanted to find the second term V¥ of the shock
structure anyway then the two methods are comparable in efficiency. Note also the advantage of
m.a.e. in throwing up naturally the need for an ‘embryo shock region’ which might otherwise
have gone unnoticed, and furthermore that, if faced with a different problem for which no
suitable conservation law were apparent, then m.a.e. would undoubtedly be the method to use.

To complete the discussion related to A(T), note that the embryo shock solution F, matches
the outer solution V;, which in turn satisfies the initial conditions. We still have to calculate the
function K(T'), and since we do not wish to find explicitly the next term in the fully developed
shock expansion V= Vi+eVi+eVi+oe) (3.22)
(a wish which must be understandable in view of the complexity of V§), we will use the integral
conservation technique. By arguments similar to those used previously we find E,(V¥) = 0, so
that V§(x*) = o(x*~?) atinfinity and is thusintegrable. The composite expansion to O(e?) is now

V="T,+f,+efi +€2V5 +0(e?)
14-2
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112 D. G.CRIGHTON AND J.F. SCOTT

uniformly for x > 0, which is to be inserted into (3.9). Arguing as before we find

+ o +
f fidx* =0 =f [(V§+ T a*{H(x*) — 1}] dx*,
from which, if the explicit form of V7§ and the expression (3.16) for G(7") are used to evaluate the
integral, we find K(T) = — T-342/[16g(T)]. (3.23)

Note that the term involving K(7") in (3.13) represents nothing more than a correction to A(T'),
i.e. an O(e?) correction to the shock location in weak-shock theory.
Explicit evaluation of 4(7") in the three cases of physical interest, defined by (3.2), yields

A(T)=—=T¥nT (plane), (3.240)
A(T)=—-3THT—-1+(Ty—1)In T} (cylindrical), (3.240)
A(T) = - TYHE(T/T,) —Ei(Ty 1)} (spherical), (3.24¢)

where Li is the exponential integral defined by

Ei (x) = J[x i1 exp Lt

(see Abramowitz & Stegun 1964, p. 228). Formula (3.244) agrees with the result of Lighthill
(1958, equation 156) whereas with 7 = 1 our problem coincides with that considered by Sachdev
(1975) and our results for cylindrical and spherical geometry differ substantially from his.
Sachdev’s error in fact lies in following too literally Murray’s (1968) version of the integral con-
servation technique; Murray considers only constant-coefficient equations (though as we have
shown here, that is not a necessary feature) and at one stage Sachdev implicitly takes the function
g(T') as constant.

At this point it would appear that we have achieved our aim of obtaining an asymptotic
solution to the problem posed. However, as is usual in these problems, there is a non-uniformity
in our solutions for large 7. The basis for the present representation, in terms of an outer loss-less
flow plus fully developed Taylor shocks rests upon the assumptions

(i) that the shock width must be small compared with the overall scale, O(T'%), of the N-wave,

(ii) that the ‘correction due to diffusivity’ must not displace the shock too far from its location
according to weak shock theory, and

(iii) that the Taylor steady shock solution (3.8) itself remains valid as a leading order approxi-
mation in the variables x* and 7.

These assumptions are violated in a different order at large times depending on whether we con-
sider plane, cylindrical or spherical waves, so that we now have to treat these cases individually.

Plane waves

Here we have g(T') = O(1), A(T) = O(T*InT) as T—oo. The shock width in Taylor’s
solution is ¢ T3¢(7T') and the shock centre is located at 7% +¢e4(7"). We shall regard the term
K(T)sech?yin (3.13) as incorporated in the argument of the Taylor solution, as it represents a
uniformly small correction to that argument. Coondition (i) is always satisfied, but (ii) is violated,
i.e. weak-shock theory fails, when In 7' = O(e~'). We test condition (iii) by examining the ratio
eV /V§ for fixed y as T— o0, and see at once that (iii) is violated, i.e. Taylor’s solution will no
longer be valid, at the same time, In 7" = O(e™1), as that at which weak shock theory fails. Thus
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the non-uniformity still arises in a narrow transition region, outside which the loss-less N-wave
solution continues to hold. The difficulty is that the location of the transition region is not known
accurately for large T’; all we know is that for 7" = O(1) the shock centreisat 7% +¢eA(T") + O(e?),
and we need in fact to extract from O(e?) and all higher terms all the contributions giving rise to
the non-uniformity, and then sum them in an appropriate form. This we have been unable to do,
because of the great complexity of the terms. A similar difficulty arises also in the formation of a
discontinuity in the front of a relaxing shock; see § 4.

In the present case we can, nonetheless, make progress without analysing the  translational’

nonuniformity. Define Ty(¢) = exp (1/2), T = T/Ty; (3.25)

the corresponding scalings for x and V are determined as the ¢ distinguished’ scalings (Cole 1968,
p. 10) which lead to the least degenerate form of the governing differential equation. We find that

x= x/[efrl]i, (3.26)

and V(x, T,¢) = [eTT 3 Vy(w, T)+0(1)}, (3.27)
v, oV, 2V,

where 3T T V°'a_§ =S (3.28)

Not surprisingly, when the non-uniformity arises (i.e. for 7'= O(T})) all terms in the governing
equation are of comparable magnitude. We require a solution of (3.28) which matches the
Taylor shock solution in the variables (x*, 7') and the loss-less N-wave solution with variables
(x, T'). Such a solution can be found from the Cole-Hopf transformation as

Vo(#, T) = a/T{Ticxp (82/T)+1}; (3.29)

it is noteworthy that this exact solution of the original equation (3.1) does much more than match
the previous solutions: it is itself a uniformly valid solution to leading order everywhere except in
the embryo shock region (and therefore it does not satisfy the initial condition (3.3)).

The solution (3.29) holds over the whole of the waveform, and there is no reason to suspect a
further non-uniformity at larger times, as all three terms in the differential equation have already
been called into play in (3.29). Therefore we may let T — o0, and then we find that (3.29) reduces
to a ‘dipole’ solution of the linear equation

oV, a2V, .
T " o (3.30)
x ” 10 (1
namely V0~ﬂcxp(—-x~/T) = —éé—i{ﬁexp(—xz/T)}. (3.31)

The phase of the motion governed by (3.31) is referred to as ‘old-age’.

Cylindrical waves
For this case, g(T') = O(T), A(T) = O(T?). Whether or not K(T") sech?y in V¥ is regarded
asincluded in the argument of V¥, we find that conditions (i), (ii) and (iii) are all violated at the
same time, T = O(e~1). Thus we define 7’ = ¢T, and the appropriate scalings for x and V follow
easily from the matching requirements; we set

T =¢T, x =¢cby, (3.32)
V(x', T' ¢) = et Vo(x', T') +o(eb), (3.33)
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114 D. G. CRIGHTON AND J. F.SCOTT

and find that the function V satisfies the full generalized Burgers equation for cylindrical waves,

in the form E)VO oV, o2 Vo

- L7
T a"T

+Vs (3.34)
Unfortunately, except for the similarity solution mentioned in § 1, which is irrelevant here, there
are no known non-trivial solutions of this equation, so that it is impossible to make much further
progress. We can, however, note that for 7’ > 1 the nonlinear term must presumably become
small, so that (3.34) must reduce to the old-age equation

I 2V,

5 = 3T =72, (3.35)

whose dipole type of solution is

Vi=—} il
Bl
(Cx'/T"3) exp (—«"2/T"2). (3.36)

The constant C is undetermined by this study and its determination remains an important
unsolved canonical problem of nonlinear acoustics.

Spherical waves

For the spherical wave it is remarkable that the value of the constant analogous to C'in (3.36)
can be found exactly, despite our inability to solve the equation analogous to (8.34). This piece of
good fortune arises because the first non-uniformity arises in the inner (shock) region alone. We
have (with 7} = 1 temporarily)

g(T)=e, A(T)=0("/TH), G=0(Tier),
and K(T) = 0(e"/T%),

and these show that condition (i) would be violated when ee” ~ 1, (ii) when ¢7T-'e” ~ 1 and
(iii) when eTe” = 1. Itis clear then that (iii) is violated first, and we have a local non-uniformity
— a failure of the Taylor solution — in a region thin compared with 7% and located close to the
weak shock location x = T'%.
Define a large time 7;(€) by

T, (¢) exp (11(e) /Ty) = (3.37)
Then examination of the two term inner solution and the basic differential equation suggests the
scalings T' = T-T, x=Tx=T3, V' =VTI-} (3.38)

the nced for the unusual shifting’ rather than ‘stretching’ of the time variable is dictated by the
need to balance exponential and algebraic functions of ¢ on the time scale defined by (3.37). This
gives the equation N

,aV’ 1 T\WOV" oy, OV "y
artV 2{1“(T) }'6"' BT (3.38)
. T; % L(T"\ 3(T"\?

with (7-:.) = 1—5(7_,:)4'5(—7:1-) + . (3.40)

so that, expanding in the form
V'(x', T €) = Vy(x', T') +0(1), (3.41)

. v, aV’ T\ 0V

we obtain aT,—} VO = ex (7,(—)-)—&,? (3.42)
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Again we have to solve the full generalized Burgers equation, and this effectively debars us from
finding the complete solution in the (x', 7"') region if we have a general O(1) value of 7j. (Of
course, since we have a two parameter space (¢, 7;) we may relate 7; to € in some prescribed
fashion, and in some cases we might then be able to simplify (3.42) to soluble form. All such
treatments avoid the central issue posed by the solution of (3.42) with 7; = O(1), and even though
they might be of some practical relevance we shall not consider further any of the many
possibilities in which T; # 0(1).)

Now although the solution to (3.42) is not known, it must match the Taylor shock solution

according to V)~ —}tanh[3x exp (— T'/T)] as T'— —co, (3.43)
and the main loss-less N-wave according to
Vo->F% as #'—>+o and T’ —o0. (3.44)

The crucial point is, however, that even when 7"’ > 1 the main N-wave solution is still valid,
because only condition (iii) has yet been violated. Therefore the solution V§ must continue to
match the loss-less N-wave solution far into the future, so that

Vi—>F4% as &> +o0 forall T'. (3.45)

Now we argue that as 7" increases, the nonlinear term in (3.42) must decrease faster than the
linear terms, so that for large 7"’ we need a solution of the linearized form of (3.42), antisymmetric
about x = 0 and satisfying condition (3.45). There is a unique solution

Vi~ erfe[da’ Tyt e-0170] — 1}, (3.46)

so that, even though we cannot solve (3.42), we can find the long-time asymptotics of V.

The appendix gives a proof of the theorem that ¥V has the asymptotic form (3.46) under con-
dition (3.45). Itis not, however, evident thata solution Vg exists for the problem defined by (3.42),
(3.43), and it is necessary, in the absence of an explicit solution, to prove the existence of Vg in
order to justify the very unusual scalings (3.38). This is a topic taken up elsewhere (Scott 1979).

The ‘shock’ which takes over from the Taylor form at a time O(7;(¢)) is an evolutionary
shock, in which spherical spreading is a controlling mechanism. The asymptotics (3.46) show
that as 7" — + oo the width of this new form of shock is of order e* exp (3 7/7;), comparable with
the scale 7'} of the main N-wave when

eTtexp (T/T,) ~ 1.

This defines a time at which a further non-uniformity arises, a gross non-uniformity this time, in
which the whole of the wave form must be reexamined. Define

eT3%(e) exp (Tyle) /Ty) = 1, (3.47)
T=T-T, =Tzt V=T34V, (3.48)
and then we find that V satisfies the equation
VgV OV
o7t T Vg = <" (8.49)
so that setting V(x, T,e) = Vo(x, T) +0(1) (3.50)
. oV, 02V,
gives ——a—T" = exp (T/Y},)a—x;). (3.51)
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A solution can be found to this linear equation which matches the N-wave and the long time
asymptotics (3.46) of the ‘shock’ solution V. It is

Vo= 3xerfc{v(x—1)} —taerfc{v(a+1)}
+ (2nty)~texp { —v2(&# + 1)} — (2nip)Texp { —1v2(x —1)2}, (3.52)
in which v(T) = H{T,el/To}-1, (3.53)

As T — oo this solution goes over to the dipole form
4 3 2 42 3.54
V0~§E§xv exp ( —v?a?), (3.54)
which when written in terms of the original outer variables (x, T') reads

QT S {— -__’“_2.._} (3.55)
o L 2 (eT, cTTTo)k p 4cTy |
This solution is expected to remain valid to indefinitely large times 7.

This concludes our derivation of asymptotic solutions for N-wave problems in a thermoviscous
fluid. Our principal contribution ~besides delineating the asymptotic structure for plane,
cylindrical and spherical N-waves — has been to find the old age solution for spherical N-waves,
an unexpected success in view of our failure to find the solution in the (x’, T) region. To com-
pletely exhaust the possibilities of the problem posed by (8.1), nothing short of the general exact
solution to (3.1) appears to give any chance of improving upon the results we have derived in this
section: and even all the recent developments in inverse scattering theory still leave little hope
that the general exact solution will be found in the near future. We shall, however, consider the
generalized Burgers equation again in §5, this time for the important case of time-harmonic
spherical waves, for which the matched expansion approach continues to yield valuable infor-
mation.

4. SINUSOIDAL WAVES IN A RELAXING, SLIGHTLY VISCOUS GAS

In this section we shall look at a boundary value problem in which a sinusoidal velocity is
maintained at x = 0, and a plane nonlinear wave propagates away in the positive x-direction into
a relaxing thermoviscous gas. For this problem we have, as explained in § 2, the model represen-
tation (1 +a60/00) (uy — utty — Sugy) = €tlpp, (4.1)

with u(0,0) = sin 0, : (4.2)

in which we shall seek asymptotics, as ¢ - 0, uniformly in range x and in the phase variable @ of
linear acoustics. The parameter ¢ is basically a measure of the product of a signal frequency with
the time scale of the relaxation process, so that we are looking at a low frequency situation.
Alternatively, for ¢ = O(1), € can be regarded as a dimensionless bulk viscosity, while ¢ is the
similarly non-dimensional parameter incorporating equilibrium diffusive effects such as those
associated with shear viscosity and thermal conductivity. In order to highlight effects associated
with relaxation we shall take ¢ < ¢, and specifically & = 0(¢%) in order to delay for as long as
possible (in terms of expansion in powers of ¢) the intrusion of thermoviscous forces (which
becomes inevitable in some circumstances).

The differential equation preserves the periodicity initiated in the boundary condition (though
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except in the degenerate Burgers equation case ¢ = § = 0, or € = 0 it does no¢ preserve anti-
symmetry about # = 0). We work in the fundamental period — 7 < 6 < + = and begin with the
outer solution, for x, ¢ = O(1), in the form

u(x,0,€) = uy+€uy + €%u, + €3uy + 0(€3), (4.3)
with uy = sinp, (4.4)
and u, = —xsinp/(1—xcosp)?,
and where p(x, 0) defined by p=0+xsinp (4.5)

is the exact nonlinear characteristic variable. The solution %, can be expressed in Fourier series
form (see, for example, Blackstock 1972), as

® J(nx

Uy(x,0) =2 3 (1)

n=1

nx

sin n0,

in which form it is known as the Fubini solution. p is uniquely defined up to the shock formation
range x = 1, beyond which it becomes multiple-valued. It is, however, single valued at 0 = + &
for all x, and can be defined in a single valued fashion by continuous variation from 6 = + = to the
two sides of & = 0. But then for x > 1 the single valued p(x,6) so defined is discontinuous at
0 = 0, and as usual we have to insert a shock, with the scaling 6* = 6/¢ and the expansion

u(x, 0%, €) = uf (v, 0%) +euf (x,0%) +o0(e). (4.6)

Solving for u§ and matching to the loss-less outer flow gives

up?\ 1. (h—uy\ iy
aln (1 ——/2?) +3 In (m) = {0y(x) — 0%}, (4.7)
with the derivatives ugge = (M2 —ug®) /(1 +auf), (4.8)
X h—ug\ | df
and U = g(%) ug —5(h2 —ug?) {g—(l-l—) In (h+ugk)+—&;c—°}/(l+au3"). (4.9)

Thus u§ is implicitly determined, 0,(x) is an as yet undetermined function giving the shock
location, and g(x) = dInA(x) /dx = cosp,/(1 —x cosp,) where h(x) = sinp, and p,() is chosen to
make po = xsinp,, 0 < p, < m.

If ah < 1 the solution (4.7) is perfectly satisfactory, the condition a4 < 1 being the well known
condition (Lighthill 1956, p. 343; Ockendon & Spence 1969) for the shock to be ‘fully dispersed’.
If, on the other hand, ah > 1, the solution is itself multiple valued, and matches the loss-less flow
only as 6* — + c0. A discontinuity must be inserted within the ‘ partly dispersed’ relaxing shock,
to adjust the velocity to the value, — A(x), which it should have as 6% - —co.

Examination of (4.7) indicates that the appropriate discontinuous solution has the form

uf = —h(x) for 6% < 0,(x,¢), (4.10)
while for 6% > 6,

uy = the branch of (4.7) obtained by continuous variation from 6* = + 0o, at which f = + A(x).

Here 60, is defined by u(x,0,,6) = —a=! when ah > 1, (4.11)
and u refers to the exact solution of the full equation (4.1).

15 Vol. 292. A.
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118 D.G.CRIGHTON AND J.F.SCOTT

The discontinuity introduced in this way into a partially dispersed relaxing shock must, of
course, have an internal Taylor type of structure in which thermoviscous effects are significant. .
To describe this ‘subshock’ we bring in

0 = (0*—0,)/(de™), (4.12)
and write u(x, 6, €) = iy(x,0) +o(1).
Solving for #,, and matching to the 6* region, for which (4.10) holds, yields
iy = ha~'tanh {}ha=1[0 — 0,(x)]} — a7, (4.13)
with £ = ha— 1, and where we must have 6,(x) = 0 in order that the Taylor shock centre coin-
cides with the (unknown) location 6* = 6, of the discontinuity. For matching to the 6* region
to be completed we need
uf >h—2a1 as 0*—>0,(x,0),

and thus 0,(x,0) = 0,4+ 2aln (Jak) — k% 1n k. (4.14)

We now continue by determining 6,(x), using the integral conservation law technique. Inte-
gration of the original equation, and use of the boundary conditions and the periodicity of «,

produces +m
f udf = o. (4.15)

—n
In the integrand here we insert the composite expansion (uniformly valid in —n < 0 < +m,
except, when ak > 1, inside the thermoviscous ¢subshock’)

U = uy+ euy —h(x) sgn 0 +uy +¢ef; +o(€), (4.16)
with Ful, 0%) = wh + Iy (%) sgn 0% — 0%g(x), (4.17)
and hy(x) = xsin po/(1— x cos p) 2. (4.18)

If there is a subshock, it makes a contribution o(d) to (4.15), while , and u, both integrate to
zero over a period. Further, £, is integrable over ( — o0, +00) (as will be proved in a moment) and

therefore in to
f efydf = ezf S1dO0* +o(e?),

so that the integral conservation law gives

+n +n
f udﬁ:f (uf —hsgn6)do+o(e),

-

+
= ef (u§ —hsgn 6*) dO* +o(¢),

=0,
+ o0
and so j (ug — h(x) sgn 6*) d6* = o(1). (4.19)

- 00

By using (4.8) the integration can be performed, and we find the following:

(1) Fully dispersed shock, ah < 1
J‘*‘" 2(uy — hsgn 0%*) (ufa+1)
—h (R —ug®)
= —4ah+4ahln (2k) — 2h{aln (B2 —v%) + A2 In[(h+0) /(h—0)]},
=0,

dug’
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MODEL EQUATIONS IN NONLINEAR ACOUSTICS 119
where v denotes 4§ (6* = 0), and after using (4.7) this gives
Oy(x) = 2a (In2-1). (4.20)

Thus, to this order, the ‘centre’ (i.e. the location at which #f = 0) of the fully dispersed shock
remains fixed in the waveform, but is shifted from its position 6* = 0 in a thermoviscous fluid to
the point 6* = 6,( < 0).

(i) Partly dispersed shock, ah > 1
By looking at the graph of uf against 6* we find that if (4.19) is to hold, then 6,(x, 0) < 0, and

+ h * * %
f_ (u:;—/zsgne*)do*.—_f o 10 ”S(i‘;fu%j)”“““rl)dug+o(1),

© h—207?
= —4—2In (ah) + 2ahIn (44 /a) — 2h{aIn (A% — v?)
—h~tn[(A—v)/(h+v)]} +0(1),

again with v = uf(60* = 0). With the aid of (4.7) this gives

0o(x) = 2a (In2—1) + {2k — (1 +ah) In (ah)}, (4.21)
and thus to leading order the location of the discontinuity is given by
0,(x,0) = h~Y{—2—kIn (k/ha)}. (4.22)

In this case the shock centre does not, even to leading order, remain fixed in the waveform.

To demonstrate the integrability of the function f;, which was crucial to the derivation of (4.19),
we argue as in §3, using the expansion operators E,, E% to O(er) in terms of fixed values of
0, 0*. For x > 1itis found that although the terms u,, u; in the outer expansion are discontinuous
at 6 = 0 they both have limits as ¢ —> 0 4. Hence

EfEyu = Ef(uy+eu, + €%uy +€%us),
= (h—¢eh,) sgn 0 +eb*g,
where £, is defined by (4.18) and g = d In 4(x)/dx again. Then defining f; by (4.17) we have
€Ey(fy) = Ey(efy) = Eg(euf +chysgn 0* —e%g),

= E;Efu— Eyuf +¢eh,sgn 0 — 0g,

= E, E¥u+ (eh,— h) sgn 0 —e0*g,

= (B EY —EYE;)u,

= 0,

by the asymptotic matching principle. This shows that

Ey f1(0%) = 0,
and hence that fi=0(0%72) as |0* >0,

so that f; is integrable over (—o0, +00), as required.

It is possible to find another term in the 6* expansion, describing the structure of the fully or
partly dispersed shock. This term should aid us to uncover the mechanism by which the multi-
valued first order shock solution «f is developed when a/ > 1, though we have so far failed to

15-2
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120 D. G.CRIGHTON AND ]J. F.SCOTT

pinpoint the mechanism precisely. We therefore address ourselves now to the problem of deter-
mining «f, (in u(x, 0*,€) = ug +euf +o(c)), which satisfies

o\ (uE o, .| oud
(1 +(l~a—é~,‘:) {—é‘—x-—é—é; (uo Uy )} = 3w (4'23)

a linear equation, of course, but one whose coefficients involve u§, which is not even known
explicitly. An explicit solution for #f can, nonetheless, be found, as follows. Set v = u} — 0%g(x),
and for a while drop the suffix and asterisk on «{, 0*. Then

o\ /ou 0O 0 0%
(1 +a5—é) (5)—6———6—9(151)) —gé-o* (0”)) = 6-93' (4.24)

If ah > 1, then for 6 < 0, the solution for v is simply
v =Be M4 C,
where, by virtue of our proof that f; = 0(0-2), we must have
B=0 and C=#h,.

Thus uf (x,0%) = 0%g(x) + by (), (4.25)
for the case ah > 1, 0% < 0,.

If, on the other hand, we have ¢k < 1, or 0* > 0, when ah > 1, then (4.7, 4.8, 4.9) apply and
we can use

J‘uw df = ffzum(ua +1) (A2—u*)du,

= g{—2au+ahIn[(h+u)/(h—u)] + 2 [(h+u)In (h+u)
+ (h—u)In (h—u)] —In (A2 —u?)} —udb,/dx

(again with asterisk and suffix 0 suppressed). This gives

O[(ua+1) v] /00 +uv = f(u) + G(x), (4.26)
where G(x) is unknown, as yet, and
f(u) =g{a1n (h-+u) [h+u+g—((%z:f‘%] —aln (h—u) [/z——u—;((}lim——_:l_%—z—))] — (O +a(2+21n k) u
—3a [%%+ (0p+2aln k) g] Ezz—;ul? —u%}‘ (4.27)

Now f(u) — hg (2a1n2 — 0y~ 2a) — hd0,/dx as u—> h, so that if we assume
G(x) # —hhy—hg(2aln 2 —0y— 2a) + hd0,/dx
then we find, from (4.26), that asv— —/; and u >4

)

FY a non-zero constant,

which contradicts v - — £;. Thus we need

G(x) = —hhy—hg(2aIn2 -0, — 2a) + hd0,/dx,
= —hhy +g(h—ahlnah) + hdb,/dx, (4.28)
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MODEL EQUATIONS IN NONLINEAR ACOUSTICS 121
and the solution for #f is completed by setting
w = (ua+1)v/(h*—u?) (4.29)
n (4.26), to give Qw/0u = 2{ f(u) + G(x)} (ua+ 1) /(h2 —u?)2.

With the value of f given in (4.27) this can be integrated, at the expense of considerable effort,
with the result that

w=gah—1{11_/l~1[ln(zt2)]2+(/l/:l_-_l-ul) n (h+u)— (ha 1)l (/z—u)} 1Gh-1In (z-l_-u)

+ {G(x) (a+uh-2) — (au+1) %‘j—f-— 2(x) [0+ 2a(1 +1n 1] (au+ 1)} / (2 —u2) + K(x), (4.30)

K(x) being another unknown function which we now proceed to find using the integral conser-
vation law technique. First we set

, Ou 0*20%
Jo(0%) = ug‘—ﬁz—ﬁ*«a—g‘(x,O) - aﬁg(x 0+)sgno*,

= uy(%,04+) if 0% > O,} (4.31)

where hy(x, 0%) {= u(x,0—) if 0% <o.
(In this formula, and subsequently, the asterisk and subscript have now been reinstated.) Then, as
before, the matching principle implies that f, = 0(60*-2) as 0* - 4 co. The reasoning leading to
this is a little more subtle than previously; suppose that & = €% and then the next term in the
outer expansion is e*u,, where u, has a limit as 6 tends to zero from either side. Also, from (4.29)
and (4.30), v tends to a limit exponentially fast as 0* — + co. These observations allow the
matching argument to go through as before, and lead to f, = 0(0*-%). Now we remark that
uf, g, 5, uy—and hence f,—remain unchanged when ¢ # €5, and thus f, has the asserted
property anyway.

We use this fact, and the fact that f; -> 0 exponentially fast as §* - + oo, to show, by using a
composite expansion to o(e?) in the conservation law (4.15), that

+ o + © +n
f f1d6*+€1[ (uf —hsgn 6%) dO* +j Uy df = o(1). (4.32)
All terms here are known except for u,, which we write as
=U+7V,
oU 0 Ouy 0%y .
where PPy (g U) —uy—= 3 = 302 (4.33)
oV d 0%, .
50 (4 V) +a aag = 0, (4.34)

and U(0,0) = V(0,0) = 0. The equation for U preserves antisymmetry about # = 0, while the
equation for V preserves symmetry, and thus we only need the solution for ¥ in order to imple-
ment (4.32). That solution is, in fact,
V = }ax(x%cosp+2cosp—3x) /(1 —xcosp)4,
(¥2cosp + 2 cos p — 3x) dp
(1 —xcosp)3 ’
= —ah,/(2—xcosp,), (4.35)

this last result being very tedious to obtain.

and hence f+ Uy d = ZJ Vdo = ax f
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122 D. G. GRIGHTON AND J.F.SCOTT

(1) Fully dispersed shock, ah < 1
+
We havef (uf —hsgn6*)do* = 0, and

- i +h hy(uga+1) sgn 6*
b 1 Fs
f_wflda _2th (w+ i )duo.

Inserting the value w(uf) given by (4.30) we find
+ o
f £,d6% = — 2gah-1[(In 2)2 — 27| + 4Kh — 4, a,
- lln(1—x :
where J = fo ——-i(:;—-) dx = §[(In 2)® - §n?]
(cf. Lewin 1958, equation (1.16)), and this yields
K(x) = $ah= {{gh'n®+ 3hy — }hy % cos po}. (4.36)

(i1) Partly dispersed shock, ah > 1

Expand 6,(x, €) in the form :
01(x,€) = O9(x) + €011 (x) +o(€). (4.37)

Then f“’ (i —hsgn 0%) d6* = — 26(h—a=) Oy, +o(¢),

and the correction 6y, to the discontinuity location can be found by solving for the next ‘sub-
shock’ term,

u(x,0,¢€) = iwy(x, 0) +eity (x,0) +o(e). (4.38)
o O[_dbyomy o, . Ou] 0%
The term #, satisfies aap[ T 30 0 (g 17) ——a—ﬁ] =5

and is given explicitly in terms of y = }04(x) by
iy = —db,,/dx + A(y?*sech?y — 1 + 2y tanh y) + B (tanhy +ysech?y) + Csech?y, (4.39)

4, B, C being unknown functions of x. Matching of the subshock to the surrounding partly
dispersed relaxing shock gives

A=o,

do
B = —"a‘f"}ll“gmga

01 = —2w(0* = 0y9) —a*(d0so/dx + gbye + §hy),
and, by the definition (4.11) of 6,(x, €),
C = df,y/dx. (4.40)

This determines the middle term of (4.32), while the third term is given by (4.35). For the first
term we have

+ w0 -+ oo
f f1do* =f {uf + hysgn 0% — g0*} dO*,

= |t 1= g0%) a0 420,04 +o(0),

010

" (u*a+1)
N 2fh—2u-1{w+h1 h? —u? }du*+2h1010+0(1),
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MODEL EQUATIONS IN NONLINEAR ACOUSTICS 123

and the integral here can be evaluated with use of (4.30) to yield

+
f S1dO0* = 2In (1 —a~Yh) [h1h, — 2a2g] — gah ™ [In (1 —a A1) ]2 + 4a~w(0* = 6,,)
+a{hy (1~ 2h~2a~1) — 2gh~'[diln (1 —a~1%~1) + a~1h~1h]} +0(1), (4.41)
where diln (x) is the dilogarithm (see p. 110). Using these results in (4.32), we find

K(x) = =3 Ygh2hIn (1 —a=h) —hy k= (Inah + 2ah + 1) — gah1diln (1 —a~1%1)
+3[In (ah)]?} + gh2ak1n (ah) + Sah, x cos p, (4.42)

and 0y =4 YIn(1—-ah?) (hhy —ga®) —Lgah™ [In (1 —a~ k1) ]2 —a[hy (1 +a A1)
+gh=1 (diln (1 —a=h~1) —1)] + 4, ax cos p,}. (4.43)

We close this discussion of the relaxing shock with the remark that we have analysed the
structure of fully and partly dispersed shocks and Taylor subshocks at fixed values of x for which
we may have ah < 1 orah > 1. Ifa > 1 there will be two ranges, x, and x,, for which ek = 1, and
for x; < x < x, the relaxing shock will contain a subshock of the kind analysed here. Around
x = %, %5, however, there is some further asymptotic structure which we have not been able to
elucidate; as x increases through #; the relaxing shock structure changes from being smooth (for
¥ < x,) to having a nondifferentiable kink (when x = x,) to being double valued when x > x,. We
have not been able to discover either (¢) a simplified version of (4.1) which describes this evolution
or (b) aset of scaled variables which implies that (4.1) itself — and nothing simpler — provides the
required description. We hope to return to this problem in future work.

Now we consider ranges x larger than the O(1) values dealt with so far, and specifically, the
transition into old age. For large x,

h(x) ~ t(x+ 1)1+ 0(x73), Lad

and bes0) e (n )5 41) 00 (444
uniformly in 6 > 0. It follows that

ug ~ (m/x)tanh {3n(0* —0,) /x} + O(x~2), (4.45)

also uniformly in 6*, which indicates a shock thickness ex (with respect to #) and an interference
between the shock and the loss-less portion of the wave when ¥ = O(e~1). At this range u, and u§
both have magnitude O(¢), so that we define

¥ =ex, 0'=0, v =e=uy+o(1), (4.46)
there being no need for a rescaling with respect to 6 as the rapid changes in that variable have now
disappeared. These scalings give up 0w, ol

.a—x-,—uo-éb—, = -67-,2’ (4.47)

and a solution of this Burgers equation (in which relaxation effects are equivalent to a bulk
viscosity) is required, matching the shock and loss-less solutions. It was shown by Crighton (1975)
how one can do this in a constructive fashion, the basic idea being that the solution of (4.47)
should also match a composite expansion, which can be regarded as a single expansion, good for
x = O(1) uniformly in 6. The zeroth order composite expansion (of the additive kind) is

u, = ug+ug —h(x)sgn o,
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124 D. G.CRIGHTON AND J.F.SCOTT
which in the variables (x', 6) is

u(x=x"fe, 0=0, 0% =0/c)= (¢/x){ntanh (}n0'/x") —0'}+ O(e?),
so that the matching rule is interpreted as implying

eug(ex, 0) = (1/x) {m tanh (§70/ex) — 0} + O(e). (4.48)
As we know that u, must be periodic in 6, we can write

Uy = 3 {4,(x') cos (n0!) + B, (x') sin (n0)} + 4,(x'),

and therefore Fourier analysis of (4.48) gives (for ¥ = O(1), uniformly in z)
ed, (6x) = o(1),

=21 2, (—=1)? (1 —eP™/ezcos (nu))}
6Bu(ex) = X {ﬁ +2n p§1 (i + n2p?[e%x%) +0(e),
Y RPN Gk )
-3+ B e 00
= 2ecosech (nex) + O(¢).
Reconstituting (4.48) from these requirements gives
uy(x,0) =2 3 22D g (4.49)

n=18inh (nex)

for x = O(1) uniformly in 6. Note that the series has magnitude O(¢~?) in this region, and so forms
the dominant term in (4.49).

Now it is a remarkable fact that the functions given explicitly on the right sides of (4.48) and
(4.49) are each exact solutions of the Burgers equation, i.e.

N(x',0") = (1/x") {ntanh (4n0'/x") — 0"} (4.50)
D oan o & sin (nf)
and Va(x',0") = 2n=ls——-—————inh ) (4.51)
) 2
both satisfy —g—; - V%;—/, = %9—2

The proof for 1] follows by direct substitution; for ; it is necessary to use an identity for theta
functions in the manner first shown by Cole (1951). Note that ¥; and V; are not identical; they
differ by O(1) terms when x" = O(1), and by exponentially small terms when x’ < 1. V] is not
periodic, and cannot be continued periodically in a continuous fashion, whereas ¥, is periodic.
We therefore choose

ug(x',0") = Vy(x",0"), (4.51 bis)
and then (4.49) is trivially satisfied. This solution is known (with some license as to precise
correspondence) as the Fay (1931) solution in the nonlinear acoustics literature.

In the case of a thermoviscous fluid the Fay solution holds out to indefinitely large &’ (though,
of course, it is not the solution of Burgers’s equation complying with the initial condition), and for
large «’ it takes the old-age form

Va(x',0") ~ 4e"sin 0.
For the relaxing fluid this is not quite the case. We have

up(x',0') ~ 4e~*'sin 0’ +o(e ),
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MODEL EQUATIONS IN NONLINEAR ACOUSTICS 125

which shows that the linearized version of (4.1) must hold at very large ranges. The general
solution of that equation with the fundamental time variation is

u~ Cexp[—x'(de7 + (1 +a%2) )] sin {0’ +aex’ /(1 + a%?)},

which can be matched to the Fay solution to give C = 4¢. Thus, uniformly for all # and #’ > 1 we
have the old-age solution as

u~ deexp [ —x' (et + (1 +a%2)")] sin {0 + aex’ /(1 + a2€e?)}. (4.52)

We now return to an issue we have side-stepped, namély the non-uniformities which arise
when a shock is formed. As noted before, we are unable as yet to describe the non-uniformity in
the region around @k = 1, where a fully dispersed shock becomes a partly dispersed shock. What
we are concerned with here is the ‘embryo shock region’, providing a transition from the single
valued loss-less solution (4.4) for x < 1 to the fully developed relaxing shock in x > 1. We see that
uy and eu,; are comparable when x —1 = O(et), 0 = O(el), suggesting the scaling

x—1=c¢b%, 0=eld (4.53)

In this scaling eu; /uy = (£ —3/%)~2+0(1) and p = etfp+o(et), where  is defined as a root of
13— 63p— 60 = 0; (4.54)
the highest root for § > 0 and the l<-);vest for § < 0. Then u, = €tp +o(et), suggesting an expansion
u(%,0,¢) = etiy(%,0) +o(et), (4.55)

Oy Ody _ Q%
LY Y T

where

Making the Cole-Hopf transformation
i, = 201n H(%,0) /00
. 0H o*H
g1ves &‘ = -a—aré',

for which we attempt to represent the solution in the form

-+ oo
H =" Kg) exp bad + 108} dg (4.56)

with K(g) to be determined by matching.
For matching to the main wave for # < 1 we find

etiy((x—1)/et, 0/et) = etp+ O(e)

for (x — 1) strictly O(1), uniformly in 6. In particular, we wish to take ¥ = 1—D,, 6 = ¢tD, with
D,, D, constantsand D, > 0, for then :

2522 0) 2 [ k(g) expl-L (Dyg— 3D, ) d
6.} ’6% - e q p2% 2q— lq q3

which can be estimated by the method of steepest descent to yield

&eﬁo("‘%l, ‘Z)— ig2+2 3 K'(Do/Dy) (Dz/l/)D +0().
2 1

16 Vol. 292. A.
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126 D. G. CRIGHTON AND J. F. SCOTT
g (%=1 O\ _ 3D %DZ
Also € p(——e% , e%) D, 6D} +0(e),
so that the matching rule gives K'(q) = —&¢°K(q), } s
and K(q) = exp (—4s¢"),

apart from a multiplicative constant which does not affect the result for 7.
We now show that this solution matches both the shock and the main wave for x > 1. We have

H= fj: exp{—} (#q*— 90— 3°%)} dg

and for (x, 6) in the main wave the saddle-point of greatest importance occurs at ¢ = p, leading to
a steepest descent estimate
-1 0 x—1 0
b, (2=, 2 ) = ¢t
ity (237, 5) = (15, 3) + 0t

This is exactly the rule for matching to the main wave. In terms of the shock variables x, 6* we
have

H( 5 %e*) _e—%f exp a}rﬁ*)exp{———(——r‘l—%(x—-l)rz)}dr,

where there are now three saddle-points, at 7= 0, r= + [6(x —1)]%. Of these the first is irrelevant
to the estimate of %, while the contributions from the other two are comparable, and lead to

etily((x —1)/et, et0*) = {6(x — 1)} tanh {L0*[6(x — 1)]4} + O(e),

which is again the matching rule between the embryo shock and fully developed shock regions.
We have thus shown that

+ oo
i4(5,0) = 2500 [ exp [~ dort + g2+ 0] g (4.58)

for which series expansions in £ or # can be obtained if desired. Such expansions were in fact used
by Lighthill (1956, in calculating the profile in his figure 13), and indeed the scalings (4.53) and
the form (4.58) are indicated in that article, where they were ascertained from the exact Cole~
Hopf solution to the Burgers equation governing the motion of a thermoviscous fluid. Our work
here has essentially been to show how the matching rules lead in a constructive way to these
scalings and solutions. This completes our study of harmonic waves in a relaxing fluid.

5. SATURATION OF CYLINDRICAL AND SPHERICAL HARMONIC WAVES WITH THE
GENERALIZED BURGERS EQUATION

Itis now convenient to combine the ideas of the previous two sections, and to deal with the very

important problem of cylindrical and spherical harmonic waves in a t!.crmoviscous fluid. Let a
sinusoidal velocity be prescribed at radial location r = 7, in the form

U(ry, 7) = U, sin (w7), (5.1)

where 7 = ¢ — (r —1,) /a, is the retarded time. Then with the approximations outlined in §2 the
appropriate model equation takes the form

OU_y+1,,0U jU_ 43U

o 2@ or T e 2@ o (5.2)
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The plane wave case (j = 0) has effectively been dealt with, in essence at any rate, in §4, so that

here we consider j = 1, 2. We make the transformations and definitions
V= (r/r)¥U/T, 6= wr, )
R=1+R{(r/ry)s—1} if j=1,
R=14+RIn(r/ry) if j=2,
gR) = HR+Ry—1) if j=1, (5.3)
¢(R) = exp[(R=1)/Ry]) if j=2,
¢ =204/(y+1)UyRya, if j=1,
e=wd/(y+1)Uya, if j=2

and Ry = (v +1) Uyory jad,
to reduce (5.2) and (5.1) to the form

oV oV v

5 Vo = B 5

7(1,0) = siné.

(5.4)

In §3 we kept the parameter 7 fixed as € - 0; this kept geometric and finite amplitude effects
comparable for 7= O(1). In the present problem we could do the same thing, keeping R, fixed
and letting ¢ — 0. The methods developed in §§3 and 4 are found to be equally applicable here,
though we do not give details. We quote only the old-age solution for spherical waves, which is
found to be .

4aexp (—ar)sin (wr)

Uln7) ===y orne (5.5)

where a = tdw?/a} (5.6)
is the usual small-signal attenuation coefficient. The comparable result for the plane wave case is

4w exp (—ax) sin (or)
R P

(5.7)

displaying the familiar phenomenon of amplitude saturation: the non-dependence of the old-age
solution on the source amplitude Uj,. By contrast, the spherical wave solution (5.5) displays a
‘supersaturation’ feature, with the old-age amplitude actually decreasing as U, increases!

The situation R, = O(1), ¢—0 which gives rise to supersaturation does not, however,
correspond to the physical process of increasing the source amplitude U, while keeping all other
variables fixed. For that situation we need to solve problem (5.4) subject to

Ry=ac¥ as e->0+, (5.8)

where a@ > 0 is fixed. Of course, this has the effect of making geometric spreading changes small
for R = O(1), though as we shall see, these effects become important at larger ranges.

The problem is easily solved for R = O(1); in the outer (loss-less) region we have the solution
given in (4.4), while in the Taylor shock region we have the expected profile

Vi = h(R) tanh [h(R) 0* /5], (5.9)

16-2
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128 D.G. CRIGHTON AND J.F. SCOTT
with 0% =0/ct and b=a if j=1, (5.10)
while 0* =0/ and b=2 if j=2.

Whether j = 1 or 2, however, we find now that a breakdown of the (loss-less flow and Taylor
shock) solution occurs in both inner and outer regions simultaneously, at a distance given by
Re¥ ~ 1, so that we introduce

R'=Reb, 0 =0, Veti=TVi+o(1), (5.11)

vy L, 0V, ~ 02V
to get D - V=22 5 = G(R )W/zo’ (5.12)
where GR)=%R+a) for j=1, (5.13
G(R) =exp(R'/a) for j= 2.} 13)

The solution V¢ (R’, ') has to match the solutions in the loss-less and Taylor shock regions. At this
stage we have come to an irreducible problem, dependent upon the parameter a. No solution is
known in analytic form, so that we cannot progress further, except to note that as R’ —co the
solution V4(R’,0") must tend to the old-age form, a sinusoidal solution of the linearized version
of (5.12). Thus we anticipate that as R+ o0

Vo~ Cy(a)exp{—1R*—}aR'}sinf if j—l} (5.14)

Vo~ Cyla)exp{—aexp (R'/a)}sinfd if j=2,
and just as in § 4 these are not quite the expected old-age forms. The solutions of the linearized

equation (5.4), in its original form, which match the above solutions of the linearized large R’
version of (5.12) can be found as

V ~ €3Cy(a) exp{—1eR? — LaetR + }eR}sinf if j=1, (5.15)

V ~ eCy(a) exp{aexp[e(R—1)/a]}sing if j=2, (5.16)
for Re¥ > 1.
Returning to the physical variables, these read

U~ [a/(y+1)w(rry)}] Dy(or,) exp (—or)sin (wr) if j=1, (5.17)
U~ [ad/(y+1) wr] Dy(ary) exp (—or)sin (or) if j=2, (5.18)

where D,, D, are undetermined functions of the parameter ar,, which is equivalent to « and is to
be regarded as a fixed parameter here. The expressions (5.17, 5.18) show amplitude saturation as
expected — and as confirmed by experiment (Shooter et al. 1974). Unfortunately they still
contain the unknown functions D,, D, of the single variable (ar,), and for the determination of
these functions it would appear that nothing short of the general solution to the Burgers equation
for cylindrical and spherical waves will suffice. A heuristic argument given by Shooter ¢¢ al.
(1974) leads also to the spherical wave solution (5.18) provided that

Dyfary) = dexp (I'(arg)} I'(ary), (5.19)
where the function I'is defined implicitly by
x) In{I"(x)/x} = 1. (5.20)
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It is remarkable that their proposal has the structure (5.18) which emerges only after a fairly
intricate asymptotic analysis, and in view of the fact that (5.19) gives agreement with the experi-
ments of Shooter ¢¢ al. on saturation of spherical waves in water it can be safely commended as
adequate for all purposes except that of understanding the mechanics bound up in the intractable
equation (5.12).

6. N-WAVES IN A RELAXING GAS

We conclude with a brief discussion of the propagation of plane N-waves in a relaxing gas. The
model equation will be taken in a form whose structure will be appreciated from the work of
§§2—4, namely

0\ (Ou Ou 0% 0%u
(1 —aea—x) (ﬁ+u5§—86;§) = 6-8;5, (6.1)
) =x for |¥ <1,
th 1 6.2
W ul ){= 0 for |x| > 1.} (6-2)

In (6.1) eis the ratio of relaxation time to the time L/a, characteristic of a wave of length L, a is a
fixed positive parameter, ¢ = o(e?) is a very small thermoviscous diffusion coefficient. Precise
details can be ascertained from a comparison of (6.1) with §2.

The outer loss-less solution is the same as that for N-waves in a thermoviscous fluid (§ 3 with
g = 1), while the inner shock solution has the same form as was discussed in § 4 for harmonic waves
in a relaxing gas. When a7—% > 2 the shock at the head of the wave is partly dispersed, and
must contain a Taylor subshock of the usual kind. To be specific, let

x¥ = (x—TY /e, u(x* T,¢) = (1+uf)/2T +0(1); (6.3)
then aln(1—uf®)+ THn[(1—ud) /(1 +u)] = x* - A(T), (6.4)
where an integral conservation law determines 4(7T") as
AT)==TinT—2a(In2-1) -4, (6.5)
and 4, = 0 when there is no subshock,
Ay=2T¥HaT1—-2-In(}aT-%) (1+3aT1)}, (6.6)

when there is a subshock.

Thus if @ > 2 there is a subshock up until 7" = ()2, when an ‘embryo subshock’ region is
needed, much as described earlier. There is again a non-uniformity at large 7, actually for
In 7'~ €1, but when 7> ¢~2 the solution to the present problem coincides, to leading order,
with that for N-waves in a thermoviscous fluid. The large time non-uniformity is therefore
covered by the work of § 3 for N-waves governed by Burgers’s equation.

The embryo shock region is interesting. The required rescaling to describe the initial motion is

f=(x—=1)fe, T= (T—l)/e,}

u(a?,f",e) =dy+o0(1), (6.7)

and the equation for 7, is the full relaxing gas model equation (with thermoviscous terms sup-
pressed), namely
0\ (04, Odg\ 0%y
(1—%) (af" +220—a—§) =Tk (6.8)
16-3
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Embedded inside the embryo shock region, there is an embryo subshock region, defined by the

scaling ¥ =[r—t—a(T-10)]/8, T=(T-1)/s, (6.9)

and the expansion u(®, Tye) = ay(%, T) +o(1), (6.10)
0 (Oty . Ody 62120) _ 511

where 5},(5-7':% +u0~é—§—-&;§ == O, (61 )

with matching to the embryo shock region expressed by

dy,->0 as a?—>—|~oo,} (6.12)
and dyg—~1 as X—> —o0. '

The solution in this embryo subshock region is found from the Cole~-Hopf linearization as

iy = {1 +erfc (—-%/2T%) exp[—(T— 2;?)/4]}—1.

erfc[(F—T)/2T%] (6.13)

As T'— 0, i, goes over to the ¢ tanh’ profile of the steady state Taylor subshock.

% %

Ficure 1. The waveform #,(#), seen from a frame of reference moving with velocity % at (a) f’ = 0(1)
and (b)) T'> 1.

Even if ¢ < 2, the subshock persists throughout the embryo shock region, and is located at
x5( T, €) say. Thus the embryo shock solution u, above is zero for ¥ > x,, and satisfies the initial

condition lo(%,0) = 1— H(%), (6.14)

where H is the Heaviside function. Equation (6.8) cannot, as yet, be solved exactly for 4,, though
the qualitative behaviour of é, can be understood with the above conditions. For 7' oo, iy goes
over to the fully dispersed relaxing shock profile discussed in § 4.

If a > 2, the ‘step’ persists into the fully developed relaxing shock in the form of a subshock,
while if @ < 2 the step amplitude becomes exponentially small outside the embryo shock region.
In any case, it is evident how the step fits in to the solution after the embryo shock region; a
sketch is given in figure 1 of the waveform #,(£) at different times fZA“, with the subshock step in the
front of the wave.

This completes a brief examination of the salient features of the head of the wave. For the
situation at the other end of the wave a generally similar situation exists, though a simple
reflexion argument is not adequate as the solution is not antisymmetric about x = 0.
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7. CONCLUSIONS

In this article we have attempted to show how the methods of matched asymptotic expansions
can be applied in the study of nonlinear acoustics. Although the problems we have tackled are
of interest in themselves they also scrve as illustrations (sometimes with distinctly unusual fea-
tures, as in § 3) of techniques with much wider applications. The process of solution starts with a
formulation of the problem to be solved as an equation (or set of equations) with boundary and/
or initial conditions. The equation may be an approximation itself or it may be exact, leaving
aside the fact that few equations are strictly exact: even the Navier—Stokes equation is itself an
approximation, neglecting many physical phenomena. The problem is then non-dimensional-
ized on some suitable scales, in general leaving several non-dimensional free parameters (Rey-
nolds numbers, Mach numbers, etc.). One of these is assumed small and the remainder are to
have fixed asymptotic relationships with this governing parameter; the choice is dictated by
physical interests and attempts to make the resulting approximate problem soluble (see §2,
though note also that the choice dictated by physical requirements led to an intractable irre-
ducible problem in §5). An asymptotic expansion is assumed and the resulting approximate
problems solved. In general there are places where this expansion breaks down and new regions
must be introduced to cope with this. The method is essentially constructive — pointing out at
each stage the need for a new region- although it may still be difficult to find the right
stretchings or translations in the coordinates. Thus in §4, for example, we were unable to
find the correct region to describe the production of the subshock as the relaxing shock became
partly dispersed; we feel that this is a question of coordinate translation but cannot justify this at
present.

Often there arc regions in which the problem will not simplify (i.e. the zeroth order problem is
governed by the complete equation with no small parameters) or in which one cannot solve the
zeroth order problem. In these cases results about the asymptotics of the zeroth order problem
may still allow matching to other regions to be accomplished. Consider § 3, where we obtain the
spherical old age solution by matching to an ‘irreducible’ region.

Even when the problem is not solvable in some regions, the asymptotic structure itself is of
great interest. First, it often describes the physical components of the solution, shock waves,
transition regions, etc., and in general this is more interesting than the detailed solutions obtained.
Secondly, one may be able to prove results about the solution based on the scalings themselves,
as, for example, in § 5, where we have shown that saturation occurs and have proved that the
saturation amplitude has a particular form, leaving only one function of a single parameter
undetermined. In this context we should mention the triple-deck schemes, used in high Reynolds
number flows, in which the reduced problems are often not solvable analytically and where the
emphasis is placed on the importance of asymptotic structure. The incredible accuracy of
some of the results obtained by the triple-deck method is an added bonus.

In those regions where analytic solution is impossible one should prove the cxistence of a
solution which matches the surrounding regions, for otherwise the choice of stretchings is in
doubt. It is easy to construct examples of the incorrect choice of a region in which the solution will
not match the other regions, and particularly if the stretchings are complicated and non-standard
one cannot be sure they are right unless existence is proven. As an example, in § 3 the choice of
regions for the transition of the spherical wave to old-age is not simple, and it is not obvious that
there exists a solution to the resulting problem. An article is in preparation (Scott 1979) proving
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132 D. G.CRIGHTON AND ]J.F. SCOTT

the existence result for this case, but a general theory of existence with asymptotic boundary or initial
conditions necds to be developed.

Following on from this, it is less imperative, but nonetheless desirable to show uniqueness of
solutions to the reduced equations with their corresponding matching conditions. Often the
general solution to the zeroth order equation is known and in this case the matching conditions
fix all unknown functions, thereby showing uniqueness. However, in some cases, e.g. the Fay
solution and embryo shock region in § 4, the solution is known, but uniqueness is not guaranteed.
Again a general theory of asymptotic uniqueness is required.

Other applications of the techniques illustrated in this paper will be made in articles now in
preparation covering ionization fronts in HII regions, sound propagation in a stratified atmos-
phere and diffraction out of a sound beam of finite width. As can be seen, the methods do indeed
cover a broad range of problems and deserve wider application than we have been able to suggest
in this article.

J.F.S. acknowledges the receipt of an S.R.C. Research Studentship during the period of
preparation of this paper. D.G. C. acknowledges the partial support of this work by a grant from
the Ministry of Defence, administered by the Royal Aircraft Establishment, Farnborough;
a number of helpful discussions with Dr E. G. Broadbent, F.R.S., of R.A.E. are gratefully
acknowledged.

APPENDIX. LONG TIME ASYMPTOTICS OF THE SOLUTION OF BURGERS’S EQUATION
FOR SPHERICAL WAVES

In §3 we were led to the following problem:

W LV 2V
a7tV = e

V ~ —}tanh (Jxe~T/To) as T —o0,

(A1)

Vs> +}% as x—> too,

which will be discussed in a forthcoming article (Scott 1979) from a pure mathematical stand-
point. For the moment, however, we will only need to know that V is bounded, which seems

physically evident.

oV
= eTITy AN o Sl A
Put v = %11 /T, to find 5 e

oV __T,, 07
v Ox

and, looking for the solution as 7" co, we let I, be the solution of

2
'5'1;' = ng'é'x'g with T/(',(x, V= 1) = V(x, VY == 1)
B v e (V) (x,v') e~@—a)ae-" T dx'dy’
Then V="- 1f_w v [4n(v—v")]} ’
v J‘ v J‘ © (x' —x) V2(x', V") e~ @—a" 0= T8 dy’ 4y’
IR T T3 n[4(v—=1")]} ’

—V v e yV2(x+ 2T (v —v' )iy, v') e v dy dv’
R Vin[4(v—v')]% :
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Let K be a bound on V (i.e. | V| < K for all x and »). Then
V=T f lyle v dydv’
2J1|: V=2

_ K2 vi+ (v—1)
N n(v’z‘—(v-l)%

)~>O as v-—>o00.

Therefore V ~ 1 as v —>c0.
The asymptotics of V as T'— co are now reduced to those of I, a much easier problem since
satisfies the diffusion equation. Letting

& = Uy} [erfe (x/2T, vh) — 1],
then o also satisfies the diffusion equation, and so if #(x) = a(x, v = 1) we have

© B(x') e @ A=) TSy’
cw Tol4n(r=1)]}

oL ==

Next we form an estimate of this integral; because V— + } asx— + oo, #(x) - 0 atinfinity and
so |B(x)| < € for |¥| > X(¢), for any ¢ > 0. By using the bound on V, |#(x)| < K+1} for all x.

Therefore
1

o| < e + x')| e~@—2)/a-1) T3 dx'},
i 73[4n(v—1)]%{fm<m fm>x<e>'/”< )

) m{(’( +3) 2X (6) +eTg[4n(y — 1)]H),

K+ X
Tm(r =D e

so for given ¢ > 0 we can find v, sufficiently large that |a| < 2¢ for v > v, i.e. a—>0 as v—>o0,
uniformly in x. Our conclusion is that

VeV, ~ % (erfe (x/2TE eT2T0) —1) as  T->o0,

which is the statement made in § 3 and which we have now justified.
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